Total contact hours

Theory	64	T	P	C
Practical	0	2	0	2

AIMSAt the end of the course, the students will be equipped with cognitive skill to enable them to present facts in a systematic and logical manner to meet the language demands of dynamic field of commerce and industry for functional day-to-day use and will inculcate skills of reading, writing and comprehension.

COURSE CONTENTS

ENGLISH PAPER "A"

1 PROSE/TEXT
16 hours
1.1First eight essays of Intermediate English Book-II

2 CLOZE TEST
4 hours
2.1 A passage comprising $50-100$ words will be selected from the text. Every 11th word or any word for that matter will be omitted. The number of missing word will range between 5-10. The chosen word may or may not be the one used in the text, but it should be an appropriate word.

ENGLISH PAPER "B"

3GRAMMAR
26 hours
3.1Sentence Structure.
3.2Tenses.
3.3Parts of speech.
3.4Punctuation.
3.5 Change of Narration.
3.6 One word for several
3.7 Words often confused
$\begin{array}{ll}\text { 4. COMPOSITION } & 8 \text { hours } \\ \text { 4.1 Letters/Messages } & \\ \text { 4.2Job application letter } \\ \text { 4.3For character certificate/for grant of scholarship } \\ \text { 4.4Telegrams, Cablegrams and Radiograms, Telexes, Facsimiles } \\ \text { 4.5Essay writing } \\ \text { 4.6Technical Education, Science and Our life, Computers, Environmental } \\ \text { Pollution, Duties of a Student. }\end{array}$

5. TRANSLATION

5.1 Translation from Urdu into English.
For Foreign Students: A paragraph or a dialogue.

RECOMMENDED BOOKS

1.Intermediate English Book-II.
2.An English Grammar and Composition of Intermediate Level.
3.A Hand Book of English Students By Gatherer.

Eng-112ENGLISH

INSTRUCTIONAL OBJECTIVES

PAPER-A

1. DEMONSTRATE BETTER READING, COMPREHENSION AND VOCABULARY

1.1 Manipulate, skimming and scanning of the text.
1.2 Identify new ideas.
1.3 Reproduce facts, characters in own words
1.4Write summary of stories

2. UNDERSTAND FACTS OF THE TEXT

2.1 Rewrite words to fill in the blanks recalling the text.
2.2 Use own words to fill in the blanks.

PAPER-B
3. APPLY THE RULES OF GRAMMAR IN WRITING AND SPEAKING
3.1Use rules of grammar to construct meaningful sentences containing a subject and a predicate.
3.2State classification of time, i.e present, past and future and use verb tense correctly in different forms to denote relevant time.
3.3 Identify function words and content words.
3.4 Use marks of punctuation to make sense clear.
3.5 Relate what a person says in direct and indirect forms.
3.6Compose his writings.
3.7 Distinguish between confusing words.

4.APPLY THE CONCEPTS OF COMPOSITION WRITING TO PRACTICAL SITUATIONS

4.1Use concept to construct applications for employment, for character certificate, for grant of scholarship.
4.2Define and write telegrams, cablegrams and radiograms, telexes, facsimiles
4.3 Describe steps of a good composition writing.
4.4 Describe features of a good composition.
4.5 Describe methods of composition writing
4.6Use these concepts to organize facts and describe them systematically in practical situation.

5. APPLIES RULES OF TRANSLATION

5.1 Describe confusion.
5.2 Describe rules of translation.
5.3Use rules of translation from Urdu to English in simple paragraph and sentences.

Math-113 APPLIED MATHEMATICS-I

Total Contact Hours

Theory 96 Hours.

Pre-requisite:Must have completed a course of Elective Mathematics at Matric level.
AIMS: After completing the course the students will be able to
1.Solve problems of Algebra, Trigonometry, vectors, Mensuration, Matrices and Determinants.
2.Develop skill, mathematical attitudes and logical perception in the use of mathematical instruments as required in the technological fields.
3.Acquire mathematical clarity and insight in the solution of technical problems.

COURSE CONTENTS

1. QUADRATIC EQUATIONS

6 Hours
1.1 Standard Form
1.2 Solution
1.3 Nature of roots
1.4 Sum \& Product of roots
1.5 Formation
1.6 Problems
2. ARITHMETIC PROGRESSION AND SERIES.

3 Hours
2.1 Sequence
2.2 Series
2.3 nth term
2.4 Sum of the first n terms
2.5 Means
2.6 Problems
3. GEOMETRIC PROGRESSION AND SERIES.

3 Hours
3.1 nth term
3.2 Sum of the first n terms
3.3 Means
3.4 Infinite Geometric progression
3.5 Problems
4. BINOMIAL THEOREM

6 Hours
4.1 Factorials
4.2 Binomial Expression
4.3 Binomial Co-efficient
4.4 Statement
4.5 The General Term
4.6 The Binomial Series
4.7 Problems.
5. PARTIAL FRACTIONS 6 Hours
5.1 Introduction
5.2 Linear Distinct Factors Case I
5.3 Linear Repeated Factors Case II
5.4 Quadratic Distinct Factors Case III
5.5 Quadratic Repeated Factors Case IV
5.6 Problems
6. FUNDAMENTALS OF TRIGONOMETRY 6 Hours
6.1 Angles
$6.2 \quad$ Quadrants
6.3 Measurements of Angles
6.4 Relation between Sexagesimal \& circular system
6.5Relation between Length of a Circular Arc \& the Radian Measure of its central Angle
6.6 Problems
7. TRIGONOMETRIC FUNCTIONS AND RATIOS6 Hours
7.1 Trigonometric functions of any angle
7.2 Signs of trigonometric Functions
7.3 Trigonometric Ratios of particular Angles
7.4 Fundamental Identities
$7.5 \quad$ Problems
8. GENERAL IDENTITIES 6 Hours
8.1 The Fundamental Law
8.2 Deductions
8.3 Sum \& Difference Formulae
8.4 Double Angle Identities
8.5 Half Angle Identities
8.6 Conversion of sum or difference to products
8.7 Problems
9. SOLUTION OF TRIANGLES 6 Hours
9.1 The law of Sines
9.2 The law of Cosines
9.3 Measurement of Heights \& Distances
9.4 Problems
10. MENSURATION OF SOLIDS30 Hours
10.1 Review of regular plane figures and Simpson's Rule
10.2Prisms
10.3 Cylinders
10.4 Pyramids
10.5 Cones
10.6 Frusta
10.7 Spheres
11. VECTORS 9 Hours
11.1 Scalers \& Vectors
11.2 Addition \& Subtraction
11.3 The unit Vectors i, j, k
11.4 Direction Cosines
11.5 Scaler or Dot Product
11.6 Deductions
11.7 Dot product in terms of orthogonal components
11.8 Vector or cross Product
11.9 Deductions
11.10 Analytic Expression for a x b.
11.11 Problems
12. MATRICES AND DETERMINANTS 9 Hours
12.1 Definition of Matrix
12.2 Rows \& Columns
12.3 Order of a Matrix
12.4 Algebra of Matrices
12.5 Determinants
12.6 Properties of Determinants
12.7 Solution of Linear Equations
12.8 Problems
REFERENCE BOOKS

1. Ghulam Yasin Minhas - Technical Mathematics Vol-I, Ilmi Kitab Khana, Lahore. 2.Prof. Riaz Ali Khan - Polytechnic Mathematic Series Vol I \& II, Majeed Sons, Faisalabad
3.Prof. Sana Ullah Bhatti - A Text Book of Algebra and Trigonometry, Punjab Text Book Board, Lahore.

Math-113 APPLIED MATHEMATICS-I

INSTRUCTIONAL OBJECTIVES
1.USE DIFFERENT METHODS FOR THE SOLUTION OF QUADRATIC EQUATIONS.
1.1 Define a standard quadratic equation.
1.2 Use methods of factorization and method of completing the square for solving the equations.
1.3 Derive quadratic formula.
1.4 Write expression for the discriminant.
1.5 Explain nature of the roots of a quadratic equation.
1.6 Calculate sum and product of the roots.
1.7 Form a quadratic equation from the given roots.
1.8 Solve problems involving quadratic equations.

2.UNDERSTAND APPLY CONCEPT OF ARITHMETIC PROGRESSION AND SERIES.

2.1 Define an Arithmetic sequence and a series.
2.2 Derive formula for the nth term of an A.P.
2.3 Explain Arithmetic Mean between two given numbers.
2.4 Insert n Arithmetic means between two numbers.
2.5 Derive formulas for summation of an Arithmetic series.
2.6 Solve problems on Arrthimetic Progression and Series..
3. UNDERSTAND GEOMETRIC PROGRESSION AND SERIES.
3.1 Define a geometric sequence and a series.
3.2 Derive formula for nth term of a G.P.
3.3 Explain geometric mean between two numbers.
3.4 Insert n geometric means between two numbers.
3.5 Derive a formula for the summation of geometric Series.
3.6 Deduce a formula for the summation of an infinite G.P.
3.7 Solve problems using these formulas.
4. EXPAND AND EXTRACT ROOTS OF A BINOMIAL.
4.1 State binomial theorem for positive integral index.
4.2 Explain binomial coefficients: (n,0), (n,1).....,(n,r)......, (n,n)
4.3 Derive expression for the general term.
4.4 Calculate the specified terms.
4.5 Expand a binomial of a given index.
4.6 Extract the specified roots.
4.7 Compute the approximate value to a given decimal place.
4.8 Solve problems involving binomials.

5.RESOLVE A SINGLE FRACTION INTO PARTIAL FRACTIONS USING DIFFERENT METHODS.

5.1 Define a partial fraction, a proper and an improper fraction.
5.2 Explain all the four types of partial fractions.
5.3 Set up equivalent partial fractions for each type.
5.4 Explain the methods for finding constants involved.
5.5 Resolve a single fraction into partial fractions.
5.6 Solve problems involving all the four types.
6. UNDERSTAND SYSTEMS OF MEASUREMENT OF ANGLES.
6.1 Define angles and the related terms.
6.2 Illustrate the generation of an angle.
6.3 Explain sexagesimal and circular systems for the measurement of angles.
6.4 Derive the relationship between radian and degree.
6.5 Convert radians to degrees and vice versa.
6.6 Derive a formula for the circular measure of a central angle.
6.7 Use this formula for solving problems.
7.APPLY BASIC CONCEPTS AND PRINCIPLES OF TRIGONOMETRIC FUNCTIONS.
7.1Define the basic trigonometric functions/ratios of an angle as ratios of the sides of a right triangle.
7.2 Derive fundamental identities.
7.3 Find trigonometric ratios of particular angles.
7.4 Draw the graph of trigonometric functions.
7.5 Solve problems involving trigonometric functions.
8.USE TRIGONOMETRIC IDENTITIES IN SOLVING TECHNOLOGICAL PROBLEMS.
8.1 List fundamental identities.
8.2 Prove the fundamental law.
8.3 Deduce important results.
8.4 Derive sum and difference formulas.
8.5 Establish half angle,double angle \& triple angle formulas.
8.6 Convert sum or difference into product \& vice versa.
8.7 Solve problems.

9.USE CONCEPTS, PROPERTIES AND LAWS OF TRIGONOMETRIC FUNCTIONS FOR SOLVING TRIANGLES.

9.1 Define angle of elevation and angle of depression.
9.2 Prove the law of sines and the law of cosines.
9.3 Explain elements of a triangle.
9.4 Solve triangles and the problems involving heights and distances.
10.USE PRINCIPLES OF MENSURATION IN FINDING SURFACES, VOLUMES AND WEIGHTS OF SOLIDS.
10.1 Define mensuration of plane and solid figures.
10.2 List formulas for perimeters \& areas of plane figure.
10.3 Define pyramid and cone.
10.4 Define frusta of pyramid and cone.
10.5 Define a sphere and a shell.
10.6 Calculate the total surface and volume of each type of solid.
10.7 Compute weight of solids.
10.8 Solve problems of these solids.
11.USE THE CONCEPT AND PRINCIPLES OF VECTORS IN SOLVING TECHNOLOGICAL PROBLEMS.
11.1 Define vector quantity.
11.2 Explain addition and subtraction of vector.
11.3 Illustrate unit vectors $\mathrm{i}, \mathrm{j}, \mathrm{k}$.
11.4 Express a vector in the component form.
11.5 Explain magnitude, unit vector, direction cosines of a vector.
11.6 Derive analytic expression for dot product and cross product of two vector.
11.7 Deduce conditions of perpendicularity and parallelism of two vectors.
11.8Solve problems
12.USE THE CONCEPT OF MATRICES \& DETERMINANTS IN SOLVING TECHNOLOGICAL PROBLEMS.
12.1 Define a matrix and a determinant.
12.2 List types of matrices.
12.3 Define transpose, adjoint and inverse of a matrix.
12.4 State properties of determinants.
12.5 Explain basic concepts.
12.6 Explain algebra of matrices.
12.7 Solve linear equation by matrices.
12.8 Explain the solution of a determinant.
12.9 Use Crammers Rule for solving linear equations.

Phy-113APPLIED PHYSICS

Total Contact Hours

Theory 64
Practicals 96

T	P	C

3
AIMS:The students will be able to understand the fundamental principles and concept of physics, use these to solve problems in practical situations/technological courses and understand concepts to learn advance physics/technical courses.

COURSE CONTENTS

1MEASUREMENTS.

2 Hours.
1.1Fundamental units and derived units
1.2 Systems of measurement and S.I. units
1.3Concept of dimensions, dimensional formula
1.4Conversion from one system to another
1.5Significant figures

2SCALARS AND VECTORS.

4 Hours.
2.1Revision of head to tail rule
2.2Laws of parallelogram, triangle and polygon of forces
2.3Resolution of a vector
2.4Addition of vectors by rectangular components
2.5Multiplication of two vectors, dot product and cross product

3MOTION

4 Hours.
3.1 Review of laws and equations of motion
3.2 Law of conservation of momentum
3.3Angular motion
3.4Relation between linear and angular motion
3.5Centripetal acceleration and force
3.6Equations of angular motion

4TORQUE, EQUILIBRIUM AND ROTATIONAL INERTIA.
4 Hours.
4.1Torque
4.2Centre of gravity and centre of mass
4.3Equilibrium and its conditions
4.4Torque and angular acceleration
4.5Rotational inertia

5WAVE MOTION.
5 Hours
5.1 Review Hooke's law of elasticity
5.2Motion under an elastic restoring force
5.3Characteristics of simple harmonic motion
5.4S.H.M. and circular motion
5.5Simple pendulum
5.6 W ave form of S.H.M.
5.7Resonance
5.8Transverse vibration of a stretched string

6SOUND.

5 Hrs
6.1Longitudinal waves
6.2Intensity, loudness, pitch and quality of sound
6.3Units of Intensity of level and frequency response of ear
6.4Interference of sound waves silence zones, beats
6.5Acoustics
6.6Doppler effect.

7LIGHT.

5 Hours
7.1 Review laws of reflection and refraction
7.2Image formation by mirrors and lenses
7.3Optical instruments
7.4Wave theory of light
7.5Interference, diffraction, polarization of light waves
7.6Applications of polarization in sunglasses, optical activity and stress analysis

8OPTICAL FIBER.

2 Hours
8.1Optical communication and problems
8.2Review total internal reflection and critical angle
8.3Structure of optical fiber
8.4Fiber material and manufacture
8.5Optical fiber - uses.

9LASERS.

3 Hours
9.1Corpuscular theory of light
9.2Emission and absorption of light
9.3Stimulated absorption and emission of light
9.4Laser principle
9.5Structure and working of lasers
9.6Types of lasers with brief description.
9.7Applications (basic concepts)
9.8Material processing
9.9Laser welding
9.10Laser assisted machining
9.11 Micro machining
9.12Drilling, scribing and marking
9.13Printing
9.14Lasers in medicine

10HEAT.
 4 hrs.
 10.1Review of calorimetry and gas laws
 10.2Thermal expansion of solids, liquids and gases
 10.3Heat of fusion, vaporization
 10.4Humidity, absolute and relative
 10.5Law of cooling
 10.6Thermoelectricity
 10.7Thermocouple.
 11THERMODYNAMICS.
 4 Hours
 11.1Heat energy and internal energy
 11.2First law of thermodynamics
 11.3Isometric and adiabatic processes
 11.4Efficiency of heat engine
 11.5Second law of thermodynamics (both statements)
 11.6Heat engine and refrigerator.

12TRANSFER OF HEAT.

5 Hours
12.1 Review: modes of transfer of heat
12.2Emission and absorption of heat
12.3Black Body Radiation
12.4Laws of Energy Distribution
12.5Planck's Quantum Theory
12.6The Photoelectric effect.
12.7X-rays, production, properties and uses.

13ELECTROMAGNETIC WAVES.

3 Hours
13.1 Magnetic field around a current carrying conductor
13.2Electric field induced around a changing magnetic flux
13.3Moving fields
13.4Types of electromagnetic waves
13.5Generation of Radio Waves
13.6Spectrum of electromagnetic waves.

14ATOMIC NUCLEUS.
5 Hours
14.1Structure of the nucleus
14.2Radioactivity
14.3Radioactive series
14.4Transmutation of elements
14.5The fission reaction
14.6The fusion reaction
14.7The nuclear reactor.

15NUCLEAR RADIATIONS.

5 Hours
15.1Properties and interaction with matter
15.2Radiation detectors
15.3Radiation damage and its effects
15.4Radiation therapy
15.5Radioactive tracers
15.6Application of radiation techniques in archeology, agriculture, chemical industry, polymerization, sterilization, food preservation, gauging and control, radiography.

16ARTIFICIAL SATELLITES.

2 Hours
16.1Review law of gravitation
16.2Escape velocity
16.3Orbital velocity
16.4Geosynchronous and geostationary satellites
16.5Use of satellites in data communication.

17MAGNETIC MATERIALS.

2 Hours
17.1Magnetism
17.2Domains theory
17.3Para, dia and ferromagnetism and magnetic materials
17.4B.H. curve and hysterisis loop.

18SEMI CONDUCTOR MATERIALS.

2 Hours
18.1Crystalline structure of solids
18.2Conductors, semiconductors, insulators
18.3P-type and N-type materials
18.4P-N junction
18.5P-N junction as a diode
18.6Photovoltaic cell (solar cell)

RECOMMENDED BOOKS

1Tahir Hussain, Fundamentals of Physics Vol-I and II
2Farid Khawaja, Fundamentals of Physics Vol-I and II
3Wells and Slusher, Schaum's Series Physics .
4Nelkon and Oyborn, Advanced Level Practical Physics
5Mehboob Ilahi Malik and Inam-ul-Haq, Practical Physics
6Wilson, Lasers - Principles and Applications
7M. Aslam Khan and M. Akram Sandhu, Experimental Physics Note Book

Phy-113APPLIED PHYSICS

INSTRUCTIONAL OBJECTIVES

1 USE CONCEPTS OF MEASUREMENT TO PRACTICAL SITUATIONS AND
TECHNOLOGICAL PROBLEMS.
1.1Write dimensional formulae for physical quantities
1.2Derive units using dimensional equations
1.3Convert a measurement from one system to another
1.4Use concepts of measurement and Significant figures in problem solving.

2 USE CONCEPTS OF SCALARS AND VECTORS IN SOLVING PROBLEMS INVOLVING THESE CONCEPTS.

2.1Explain laws of parallelogram, triangle and polygon of forces
2.2Describe method of resolution of a vector into components
2.3Describe method of addition of vectors by rectangular components
2.4Differentiate between dot product and cross product of vectors
2.5Use the concepts in solving problems involving addition resolution and multiplication of vectors.

3 USE THE LAW OF CONSERVATION OF MOMENTUM AND CONCEPTS OF ANGULAR MOTION TO PRACTICAL SITUATIONS.

3.1Use law of conservation of momentum to practical/technological problems.
3.2Explain relation between linear and angular motion
3.3Use concepts and equations of angular motion to solve relevant technological problems.

4USE CONCEPTS OF TORQUE, EQUILIBRIUM AND ROTATIONAL INERTIA TO PRACTICAL SITUATION/PROBLEMS.

4.1Explain Torque
4.2Distinguish between Centre of gravity and centre of mass
4.3Explain rotational Equilibrium and its conditions
4.4Explain Rotational Inertia giving examples
4.5Use the above concepts in solving technological problems.

5USE CONCEPTS OF WAVE MOTION IN SOLVING RELEVANT PROBLEMS.
5.1Explain Hooke's Law of Elasticity
5.2Derive formula for Motion under an elastic restoring force
5.3Derive formulae for simple harmonic motion and simple pendulum
5.4Explain wave form with reference to S.H.M. and circular motion
5.5Explain Resonance
5.6Explain Transverse vibration of a stretched string
5.7Use the above concepts and formulae of S.H.M. to solve relevant problems.

6UNDERSTAND CONCEPTS OF SOUND.

6.1Describe longitudinal wave and its propagation
6.2Explain the concepts: Intensity, loudness, pitch and quality of sound
6.3Explain units of Intensity of level and frequency response of ear
6.4Explain phenomena of silence zones, beats
6.5Explain Acoustics of buildings
6.6Explain Doppler effect giving mathematical expressions.

7USE THE CONCEPTS OF GEOMETRICAL OPTICS TO MIRRORS and LENSES.

7.1 Explain laws of reflection and refraction
7.2Use mirror formula to solve problems
7.3Use the concepts of image formation by mirrors and lenses to describe working of optical instruments, e.g. microscopes, telescopes, camera and sextant.

8UNDERSTAND WAVE THEORY OF LIGHT

8.1 Explain wave theory of light
8.2Explain phenomena of interference, diffraction, polarization of light waves
8.3Describe uses of polarization given in the course contents.

9UNDERSTAND THE STRUCTURE, WORKING AND USES OF OPTICAL FIBER.

9.1 Explain the structure of the Optical Fiber
9.2Explain its principle of working
9.3Describe use of optical fiber in industry and medicine.

10UNDERSTAND THE STRUCTURE, WORKING AND USES OF LASERS.

10.1Explain the stimulated emission of radiation
10.2Explain the laser principle
10.3Describe the structure and working of lasers
10.4Distinguish between types of lasers
10.5Describe the applications of lasers in the fields mentioned in the course contents.

11UNDERSTAND CONCEPTS OF HEAT.

11.1Explain calorimetry
11.2Explain Gas laws giving mathematical expressions
11.3Explain Thermal expansion of solids, liquids and gases
11.4Distinguish between heat of fusion, vaporization
11.5Distinguish between absolute and relative Humidity
11.6Describe Laws of cooling
11.7 Explain basic concepts of Thermoelectricity
11.8Describe Thermocouple, giving its principle, structure and working.

12UNDERSTAND LAWS OF THERMODYNAMICS.
12.1Distinguish between heat energy and internal energy
12.2Explain first law of thermodynamics giving its applications
12.3Distinguish between isometric and adiabatic processes
12.4Explain second law of thermodynamics describing alternate statements
12.5Distinguish between work of heat engine and refrigerator.

13 UNDERSTAND LAWS OF ENERGY DISTRIBUTION AND EMISSION OF RADIATION.
13.1 Explain modes of transfer of heat
13.2Explain Black Body Radiation and Laws of Energy Distribution
13.3Describe Planck's Quantum Theory
13.4Explain photoelectric effect
13.5Explain production, properties and uses of X-rays.

14 UNDERSTAND NATURE, TYPES, GENERATION AND SPECTRUM OF ELECTROMAGNETIC WAVES.

14.1Explain magnetic field due to current and electric field due to changing magnetic flux
14.2Explain moving fields
14.3Describe types of electromagnetic waves
14.4Explain generation of Radio Waves
14.5Explain spectrum of electromagnetic waves.

15UNDERSTAND THE STRUCTURE OF THE ATOMIC NUCLEUS AND RELEVANT ACTIVITIES.

15.1Describe the structure of the Nucleus
15.2Explain Radioactivity and Radioactive series
15.3Explain transmutation of elements
15.4Distinguish between fission reaction and fusion reaction
15.5Explain the structure and working of the nuclear reactor.

16UNDERSTAND NUCLEAR RADIATIONS THEIR EFFECTS AND USES.

16.1Describe properties of nuclear radiations and their interaction with matter
16.2Explain working of radiation detectors
16.3Explain damaging effects of nuclear radiations
16.4Explain radiation therapy
16.5Describe radioactive tracers
16.6Describe applications of radiation techniques in course contents.

17UNDERSTAND TYPES AND USES OF ARTIFICIAL SATELLITES.

17.1Explain escape velocity
17.2Explain orbital velocity
17.3Distinguish between geosynchronous and geostationary satellites
17.4Describe uses of artificial satellites in data communication.

18 UNDERSTAND BASIC CONCEPTS AND CLASSIFICATION OF MAGNETIC MATERIALS.
18.1Explain domains theory of magnetism
18.2Distinguish between para, dia and ferromagnetism and magnetic materials
18.3Distinguish between B and H
18.4Describe B.H. Curve
18.5Describe hysterisis loop.

19 UNDERSTAND BASIC CONCEPTS OF SEMI-CONDUCTOR MATERIALS AND THEIR USES.

19.1 Explain crystalline structure of solids
19.2Distinguish between conductors, semiconductors and insulators
19.3Describe semiconductors giving examples with reference to their structure
19.4Distinguish between P-type and N-type materials
19.5Explain working of $\mathrm{P}-\mathrm{N}$ junction as a diode
19.6Explain working of solar cell.

Phy-113 APPLIED PHYSICS

LIST OF PRACTICALS.

1Draw graphs representing the functions:
a) $\mathrm{y}=\mathrm{mx}$ for $\mathrm{m}=0,0.5,1,2$
b) $y=x^{2}$
c) $y=1 / x$

2Find the volume of a given solid cylinder using vernier callipers.
3Find the area of cross-section of the given wire using micrometer screw gauge.
4Prove that force is directly proportional to (a) mass, (b) acceleration, using fletchers' trolley.
5 Verify law of parallelogram of forces using Grave-sands apparatus.
6 Verify law of triangle of forces and Lami's theorem
7Determine the weight of a given body using
a) Law of parallelogram of forces
b)Law of triangle of forces
c)Lami's theorem

8Verify law of polygon of forces using Grave-sands apparatus.
9Locate the position and magnitude of resultant of like parallel forces.
10Determine the resultant of two unlike parallel forces.
11Find the weight of a given body using principle of moments.
12Locate the centre of gravity of regular and irregular shaped bodies.
13Find Young's Modules of Elasticity of a metallic wire.
14Verify Hooke's Law using helical spring.
15 Study of frequency of stretched string with length.
16 Study of variation of frequency of stretched string with tension.
17Study resonance of air column in resonance tube and find velocity of sound.
18Find the frequency of the given tuning fork using resonance tube.
19Find velocity of sound in rod by Kundt's tube.
20Verify rectilinear propagation of light and study shadow formation.
21Study effect of rotation of plane mirror on reflection.
22Compare the refractive indices of given glass slabs.
23Find focal length of concave mirror by locating centre of curvature.
24Find focal length of concave mirror by object and image method
25Find focal length of concave mirror with converging lens.
26Find refractive index of glass by apparent depth.
27Find refractive index of glass by spectrometer.
28Find focal length of converging lens by plane mirror.
29Find focal length of converging lens by displacement method.
30Find focal length of diverging lense using converging lens.
31Find focal length of diverging lens using concave mirror.
32Find angular magnification of an astronomical telescope.
33Find angular magnification of a simple microscope (magnifying glass)

34Find angular magnification of a compound microscope.
35Study working and structure of camera.
36Study working and structure of sextant.
37Compare the different scales of temperature and verify the conversion formula.
38Determine the specific heat of lead shots.
39Find the coefficient of linear expansion of a metallic rod.
40 Find the heat of fusion of ice.
41Find the heat of vaporization.
42Determine relative humidity using hygrometer.

Comp-122COMPUTER APPLICATIONS

Total contact hours
Theory 32 Hours
Practicals 96 Hours
T P C
quisite None
AIMS This subject will enable the student to be familiar with the operation of a Micro-computer. He will also learn DOS, BASIC language and word processing to elementary level.

COURSE CONTENTS

1. ELECTRONIC DATA PROCESSING (EDP)

6 Hours
1.1 Basics of computers
1.2 Classification of computers
1.3 Block diagram of a computer system
1.4 Binary number system
1.5 BIT, BYTE, RAM, ROM, EROM, EPROM
1.6 Input and output devices
1.7 Secondary storage media details
1.8 Processors and types
1.9 Using computer for system software
1.10 Using computers for application software.
1.11 Common types of software and their application.
2. DISK OPERATING SYSTEM (DOS) 6 Hours
2.1 Internal commands
2.2 External commands
2.3 Batch files
2.4 Advance features.
3. BASIC LANGUAGE

10 Hours
3.1 Introduction to high level languages
3.2 Introduction to BASIC
3.3 REM Statement
3.4 Assignment statement
3.5 Input statement
3.6 Read-Data statement
3.7 IF-THEN statement
3.8 IF-THEN Else statement
3.9 FOR-NEXT statement
3.10 DIM statement
3.11 L PRINT statement
3.12 STOP statement
3.13 END statement
3.14 Logic of a BASIC Programme
3.15 Running a BASIC Programme
3.16 Saving and Retrieving a Programme
3.17 Advance features
4. WORD PROCESSING

7 Hours
4.1 Starting word processor session
4.2 Opening a document
4.3 Saving a document
4.4 Ending word processor session (Temporarily)
4.5 Retrieving a document
4.6 Spell check
4.7 Margins and tab setting
4.8 Aligning Paragraph
4.9 Printing a document
4.10 Advance features
5.COMPUTER GRAPHIC IN BASIC 3 hours
5.1 Graphic fundamentals
5.2Points and lines
5.3Dots in space
5.4 A lightening blot
5.5Shapes
5.6Expanding circles and rectangles

RECOMMENDED BOOKS

1. Ron S. Gottfrid, Programming with BASIC,
2. Any Word Processor Latest Release (e.g., Word, Word-Perfect etc).
3. ABC'S of DOS (latest release).
4.Judd Robbins, Mastering DOS 6.0 and 6.2

Comp-122COMPUTER APPLICATIONS

INSTRUCTIONAL OBJECTIVES

1. UNDERSTAND ELECTRONIC DATA PROCESSING (EDP).

1.1Describe basics of computers.
1.2Enlist different classification of computers.
1.3Explain block diagram of a computer system.
1.4 Describe binary number system.
1.5State the terms used in computers such as BIT, BYTE, RAM, ROM, EROM, EPROM.
1.6 Identify input and output devices.
1.7 Describe secondary storage media.
1.8 Explain processor.
1.9Name different types of processors.
1.10 Explain the use of computer for system software.
1.11 Explain the use of computer for application software.
1.12 Enlist common types of software and their application.
1.13Explain various application of above softwares mentioned in 1.12
2. UNDERSTAND DISK OPERATING SYSTEM (DOS).
2.1 Explain the use of various internal command of DOS.
2.2 Explain the use of various external command of DOS.
2.3 Describe batch files.
2.4Identify advanced features
3. UNDERSTAND BASIC LANGUAGE.
3.1 Explain high level languages.
3.2 Explain Basic language.
3.3 Describe Rem statement
3.4Describe assignment statement
3.5 Explain Input statement
3.6 Explain Read-Data statement
3.7 Explain If-Then Statement
3.8 Explain If-then-Else Statement
3.9 Explain For-Next Statement
3.10 Explain DIM Statement
3.11 Explain LPRINT statement
3.12 Explain stop statement
3.13 Explain end Statement
3.14 Describe Logic of Basic program
3.15 Describe running a Basic Program
3.16 Describe saving \& retrieving Basic Program
3.17 Describe some Advance features of Basic program

4. UNDERSTAND WORD PROCESSING SESSION

4.1. Describe word-processing
4.2 Name command to be entered on Dos-prompt to load word-processor
4.3 Identify initial screen
4.4 Describe the command to open a document
4.5 Describe the procedure for naming the document
4.6 Explain importance of giving extension to a document
4.7 Describe saving and retrieving a document
4.8 Explain importance of saving the work at regular intervals
4.9 State temporarily Ending word-processing session \& document retrieval
4.10 State procedure to re-enter word processor
4.11 State procedure to re-open the document and editing
4.12 Describe spell-check facility
4.13 Describe Margins \& Tab Setting
4.14 Describe to align paragraph
4.15 Describe Re-editing techniques
4.16 Describe procedure to set-up printer
4.17 Describe command for printouts
4.18 Explain multiple-copy printout procedure
4.19 Explain some advance features
4.20 Describe procedure of condensed printing
4.21 Describe procedure for change of fonts

5.UNDERSTAND PROGRAMMING INSTRUCTIONS FOR COMPUTER GRAPHIC IN BASIC LANGUAGE

5.1 Identify graphic fundamentals in basic language
5.2Explain to draw points and lines
5.3Explain to draw dot in space
5.4Explain to draw lighting blot
5.5Explain to draw shapes
5.6Explain to draw expanding circles and rectangles

Comp-122COMPUTER APPLICATIONS

LIST OF PRACTICALS

96 hours

DOS

1Identify key board, mouse, CPU, disk drives, disks, monitor \& printer
2Practice for booting up of a computer system with DOS system disk and power off system at DOS prompt
3 Practice for CLS, VER, VOL, DATE \& TIME commands
4 Practice for COPY, REN commands
5Practice for DEL, TYPE, PATH, PROMPT, COPY CON, MD, CD, RD commands
6 Practice of the practicals at S. No. 3, 4, 5
7 Practice for FORMAT command with /s, /4, /u switches
8 Practice for DISKCOPY, DISKCOMP commands
9 Practice for SCANDISK, XCOPY, DELTREE, TREE, LABEL commands
10 Practice for PRINT, UNDELETE commands
11 Practice for the practicals at S. No. 8, 9, 10, 11
12 Practice for creating a batch file

BASIC

1Practice for loading \& unloading BASIC software and identify role of function keys in Basic
2Identify role of various keys in continuation with ALT key in BASIC programming
3Practice for CLS, LOAD, SAVE, FILE, RENUM command by loading any existing BASIC
Program
4 Practice for editing any existing BASIC Program
5 Prepare BASIC Program to display sum of two numbers using INPUTS
6Prepare BASIC Program to display sum of two numbers using READ-DATA
$7 \quad$ Prepare BASIC Program to multiply two numbers
8Prepare BASIC Program to calculate Area of Rectangle, when length and width are given
9Prepare BASIC Program to calculate area of a circle when radius/diameter is given
10Prepare very simple BASIC Programs using IF-THEN-ELSE and FOR-NEXT statement
11 Identify DIM statement
12Practice for LPRINT statement for various Programs hard-copy output

WORD PROCESSING

1 Practice for loading \& unloading a word processor
2 Practice for creating document \& saving it
3 Practice for spell-check facility of the word-processor
$4 \quad$ Practice for editing an existing document
5 Practice for various word-processing Menu Options
$6 \quad$ Practice for printing a document
$7 \quad$ Practice for margin and TAB setting and document alignment
$8 \quad$ Practice for some advance features

CHT-153 BASIC CHEMICAL ENGINEERING

\mathbf{T}	\mathbf{P}	\mathbf{C}
2	3	3

TOPICS.

1 UNITS AND DIMENSIONS

1.1 Primary and Secondary quantities
1.2 Dimensions of Secondary quantities
1.3 System of Measurement
1.4 Units and their conversion

Conversion of units of following quantities into English/Metric system.
Pressure
Viscosity
Density
Force
Energy
Work
Gas constant
1.5 Dimensional and Dimension less formula.

2 GRAPH, TYPES OF GRAPH.
2.1 Drawing simple graph.

3 PRODUCTION OF LOW TEMPERATURE BY REFRIGERATION
3.1 Definition, methods of refrigeration
3.2 Refrigerant and their properties
3.3 Application of Refrigeration
3.4 Schematic diagram of Refrigeration
3.5 Working Principle of refrigerator

4 PIPE AND TUBES
4.1 Type of pipes
4.2Cast iron pipe, wrought iron pipe, steel pipe Aluminium pipes, plastic pipe, Rubber pipes.
4.3 Pipe standards.
4.4 Pipe fitting
4.5 Types of valves
4.6Construction, working and application of gate valve, globe valve ball valve, plug cock.

5 STEAM TRAP AND THEIR TYPES
Bucket trap, expansion trap, inverted bucket trap,
Impulse trap.

6 THERMAL INSULATION,

6.1 Insulating material, properties and uses.
6.2 Insulation technique for steam pipes and vessels.
6.3 Insulation technique for low temperature pipes

7 SYMBOLS
7.1 Symbols for fitting
7.2 Symbols for equipments

8 PETROLEUM TESTS

8.1Flash point, Aniline point pour point, cloud point, Diesel index, sedimentation Number
8.2 Octane number, Cetane number

9 INTRODUCTION TO PHOTOCOPYING

REFERENCE BOOKS

Manual for basic chemical Engineering
Introduction to chemical Engineering by Walter L Bedger and
Julims T Bencharo
Introduction to chemical Engineering by Little John

CHT-153 BASIC CHEMICAL ENGINEERING

INSTRUCTIONAL OBJECTIVES

1. UNITS AND DIMENSION

1.1. The students will know the primary and secondary quantities.
1.1.1 Define primary quantity and secondary quantity.
1.1.2Give examples of primary quantities and secondary quantities.
1.2 Understand Dimensions of secondary Quantities.
1.2.1Explain the secondary quantities in terms of primary quantities.
1.2.2 Write the dimension of secondary quantities.
1.3 Understand the Systems of Measurement.
1.3.1 Name different systems of measurement.
1.3.2 Name basic quantities of each system.
1.3.3 Develop dimensions of derived quantities in each system.
1.4 Understand units and their conversions.
1.4.1Develop units to measure the derive quantities in different systems.
1.4.2 Define different units used.
1.4.3 Convert the units of one system into the other system.
1.5 Understand Dimensional and Dimensionless Formula.
1.5.1Differentiate between dimensional formula and dimensionless formula.
1.5.2 Check the dimension of an engineering formula. Like Reynold Number Potential Energy. Kinetic energy.
2. GRAPH
2.1 Understand the concept of graph.
2.1.1 Define graph.
2.1.2 Explain the types of graph.
2.1.3 Give comparison between tabular and graphic representation of data.
2.2 Understand the method of Drawing Simple Graph.
2.2.1 Explain the steps necessary to draw a graph.
2.2.2 Draw a simple graph.
2.2.3 Note the end point from a graph.
2.2.4 Take reading from a graph.
2.2.5 Make extrapolation and interpolation on a graph.
3. PRODUCTION OF LOW TEMPERATURE BY REFRIGERATION.
3.1 Know the Methods of refrigeration.
3.1.1 Define the refrigeration.
3.1.2 Name different methods of refrigeration based on the refrigeration used.
3.1.3 Compare different methods of REFRIGERATION.
3.2 Understand Refrigeration and their properties.
3.2.1 Define the refrigerant.
3.2.2 Name different refrigerants used in the field.
3.2.3 Enlist the properties of a good refrigerant.
3.3 Understand application of refrigeration
3.3.1 Give domestic application of refrigeration.
3.3.2 Give industrial application of refrigeration.
3.4 Understand Schematic diagram of refrigeration.
3.4.1 Draw a schematic diagram of refrigeration.
3.4.2 Explain the function of each component in the diagram.
3.5 Understand working principle of refrigeration.
3.5.1 Explain working principle of single fluid refrigerator.
3.5.2 Explain working principle of two fluid refrigeration.
4. PIPES AND TUBES
4.1 Know the types of pipes.
4.1.1 Enlist the types of pipes used by chemical industries.
4.1.2 Give the field of applications of different types of pipes used
4.1.3 Give characteristics of different types of pipes used by chemical engineer.
4.2 Apply the pipe standards.
4.2.1 Understand the concept of schedule Nos used for pipe.
4.2.2 Select the schedule No according to the pipe duty (Pressure).
4.3 Understand pipe fittings.
4.3.1 Define pipe fittings.
4.3.2 Enlist the different pipe fitting used.
4.3.3 Explain the functions of different pipe fittings used in chemical industries.
4.4 Know the types of valves.
4.4.1 Define valve.
4.4.2 Enlist the types of a valves.
4.5 Understand construction and working of valves
4.5.1 Explain the construction and working of gate value
4.5.2 Explain the construction and working of globe value.
4.5.3 Explain the construction and working of ball value 4.5.4 Select a proper valve according to need
5. STEAM TRAP
5.1 Know the steam trap
5.1.1 Explain the function of steam trap
5.1.2 Enlist the types of steam traps
5.2 Understand different types of Traps
5.2.1 Explain the construction and working of bucket trap
5.2.2 Explain the construction and working of inverted Bucket trap 5.2.3Explain the construction and working of expansion 0e trap
5.2.4Explain the construction and working of impulse trap
6. THERMAL INSULATION
6.1 Understand insulating materials, properties and uses 6.1.1 Define thermal insulation
6.1.2 Explain the need of thermal insulation
6.1.3 Enlist the insulating materials used in chemical industry
6.1.4 Enlist the properties of a good insulating material
6.2 Apply the insulation technique for steam pipes and valves 6.2.1 Explain the method of steam pipe insulation (lagging)
6.2.2 Calculate the thickness of insulation layer on steam pipe by using the formula(q=KADT)
6.3 Understand insulation technique for low temperature pipes
6.3.1 Decide the nature of insulation material for low temperature pipes 6.3.2 Explain the method of pipe insulation
7. SYMBOLS
7.1 Understand symbols of fittings
7.1.1 Read symbols of fittings
7.1.2 Draw symbols to represent different fittings
7.2 Understand symbols for equipments
7.2.1 read symbols of equipments
7.2.2 Draw symbols to represent different equipments and versels of chemical engineering

8. PETROLEUM TEST

8.1 Understand different tests of petroleum 8.1.1 Understand the importance of petroleum testing
8.1.2 Define flash point, Analine point pour point and cloud point
8.1.3 Explain procedure to perform above tests for petroleum sample 8.1.4 Define diesel index
8.1.5 Explain procedure to find diesel index
8.1.6 Define sedimentation number
8.1.7 Explain method to note sedimentation No
8.1.8 Define octane number and cetane number
9. INTRODUCTION TO PHOTOCOPYING
9.1 Understand the photocopying
9.1.1 Explain the concept of photocopying
9.1.2 Explain the methods of photocopying
9.1.3 Enlist the precautions to be observed while operating a photocopier

CHT. 153 BASIC CHEMICAL ENGINEERING.

LIST OF PRACTICALS

1 Calculation of dimensions of different secondary quantities. 2Determination of units of different quantities in different measuring systems.
3 Conversion of units in different systems
4 Drawing of simple graph.
5 Graph reading
6Production of low temperature by use of refrigerant, study of refrigerator/Deepfrezers.
$7 \quad$ Pipe cutting
8 Pipe Threading
9 Pipe fittings
10 Installation of valves
11 Insulation of steam traps
12 Insulation of steam pipe lines
13 Demonstration of Flash point
a Aniline point
b Pour point
c Cloud point
d Diesel index
18 Study of Photo copy machine, Photocopying practice 19 Preparation of Transparencies.

T	P	C
2	6	4

OBJECTIVES

1 To present the students the principles of General chemistry.
2 To develop understanding of the scientific methods as applied to the development of laws of chemistry.
3 To prepare the students for advance Laboratory Work.
4 To present the basic knowledge of Metallurgy to the students.

TOPICS COURSE OUTLINES

1 CONCEPT OF CHEMISTRY
1.1 Language of Chemistry
1.2 Molecular formula, Empirical formula
1.3 Chemical Equation

2 CHEMICAL LAWS
2.1 Law of conservation of mass, Law of constant proportion and their problems.
2.2 Law of Reciprocal proportion, Law of multiple proportion and their problems.

3 ATOMIC STRUCTURE

3.1 Passage of electricity through electrolytes solution and gases.
3.2 Rutherford atomic model and its defects.
3.3 Plank's theory, different types of spectrum and Bohr's theory, Defects in Bohr's theory.
3.4 Calculation of Energy, Raduis and ware number.
3.5 Frequency of Electron by Bohr's atomic model.

4 CHEMICAL BOND
4.1 Ionic Bond
4.2 Covalent bond, definition with examples in each case.
4.3 Ionization Potential, Electron Affinity.
4.4 Electronegativity and Bond Energy.
4.5 Co-ordinate coralent Bond, sigma and --- Bond definition with example in each
4.6 NY bradization, structure of CH4, H2O and NH3 etc.

5 GASES

5.1 Behavior of gases, Kinetic theory of gases.
5.2 Boyle's and Charles law, General gas equation solution of problems (concerning gas laws)
5.3 Grahm's law of diffusion Dalton's law of partial pressure and Gay Lussac law.

6 LIQUIDS

6.1 Properties of liquid viscoity its measurement.
6.2 Surface tension and its measurement.

7 SOLIDS
7.1 Preparation and properties of solid.
7.2 Classification of solid classification of crystal Lattice Energy.

8 SOLUTION

8.1 Solution Types of solution units.
8.2 Ideal and non ideal solution

9 OXID
9.1 Oxidation and reduction Important oxidising and reducing agents.
9.2 Balancing of equation by oxidation number method.

10 WATER

10.1 Sources impurities of water causes of hardness.
10.2 Hard and soft water, removal of permanent and temporary hardness.

11 ALLOYS DEFINITION AND CHEMISTRY
11.1 Composition properties and uses of stainless steel.
11.2 German silver Bronze.
11.3 Nichrom and Amalgam.
11.4 Bell metal and solder.

12 ACID AND BASE
12.1 Concept of acid and base properties of acid of base.
12.2 Strong and weak acid and base examples.
12.3 Basicity and acidity.

13 SALT
13.1 Salt types.
13.2 Examples of types of salts

14 METALS

14.1 Difference between metal and non metal.
14.2 General methods of purification of ores.

15 IRON ORES, IRON PURIFICATION

15.1 Manufacture of pig iron from blast furnace.
15.2 Manufacture of steel and its uses.

16 COPPER

16.1 Ores Extraction
16.2 Refining and uses of copper.

17 ALUMINIUM

17.1 Ores and Extraction and uses.

18 CHROMIUM

18.1 Ores Extraction uses.

TEXT AND REFERENCE BOOKS
1 Chemistry part I for class XI
2 Chemistry part II for class XII recommended by the text book Board Punjab.
3 Practical chemistry for Intermediate classes.

INSTRUCTIONAL OBJECTIVES.

1. CONCEPT OF CHEMISTRY.
1.1 Understand language of chemistry 2. HRS
1.1.1 Give symbols of various elements
1.1.2 Describe valency
1.1.3 Explain radicals
1.2 Write molecular formula and empirical formula 1. HRS
1.2.1 Write molecular formula of different compounds
1.2.2 Write empirical formula of different compounds
1.3 Understand chemical equation 2. HRS
1.3.1 Write skeleton equation
1.3.2 Balance chemical equation by hit and trial method
1.3.3 Balance chemical equation by partial equation method
1.3.4 Balance chemical equation by ionic method

2 TOPIC CHEMICAL LAWS

2.1Understand law of cnsercation of mass and law of constant proportion
2.1.1 State law of conservation of mass
2.1.2 State law of constant proportion
2.1.3Solve the problem based on law of constant proportion
2.2Understand law of reciprocal proportion and law of multiple proportion
2.2.1 State law of reciprocal proportion
2.2.2 Date law of multiple proportion
2.2.3 Solve problems based on law of multiple proportion

3 ATOMIC STRUCTURE
3.1Understand passage of electricity through electroltic solution
3.1.1 Name the particles of atoms
3.1.2 Deseribe discovery of electron
3.1.3 Descrbe discovery of proton
3.1.4 Explain discovery of new tron
3.2Understand Rutherford's model atomand Bohr's atom
3.2.1 Enlist theories of atom
3.2.2 Describe rutherford's model atome
3.2.3 Tell defects in rutherford's model atom
3.3 Understand plank's theory
3.3.1 Illustrate plank's theory
3.3.2 Enlist defects in plank's theory
3.3.3 Define band spectrum
3.3.4 Define line spectrum
3.3.5 Explain bohr's theory of atom
3.3.6 Give arrangement of electrons in Bohr's atom
3.3.7 Enlist postulates of Bohr's theory
3.4 Understand energy of atom

1. HRS

| 3.4.1 Define wave number | |
| :--- | :--- | :--- |
| 3.4 Calculate energy of atom | |
| 3.5 Understand frequency of electron | 1. HRS |
| 3.5.1 Define frequency of electron | |
| 3.5 .2 Calculate frequency of electoral | |

4. CHEMICAL BOND
4.1 Understand ionic bond 2. HRS
4.1.1 Define ionic bond
4.1.2 Illustrate ionic compounds
4.1.3 Enlist ionic compounds
4.2 Understand covalent bond 3. HRS
4.2.1 Explain covalent bond
4.2.2 Define single bond and give examples
4.2.3 Illustrate double bond and give examples
4.2.4 Describe triple bond and give examples
4.2.5 Describe covalent compounds
4.2.6 Name covalent compounds
4.3 Know ionization potential 2. HRS
4.3.1 Define ionization potential
4.3.2 Illustrate electron affinity
4.3.3 Give ionization potential of different atoms
4.4 Know electro negativity
5. HRS
4.4.1 Explain electro negativity
4.4.2 Define bond energy
4.4.3 Give example of electro negativity
4.5 Understand co ordinate bond
4.5.1 Describe co ordinate bond
4.5.2 Understand hybridization
4.5.3 Describe hyridization
4.6 Give example of Sigma bond
4.6.1 Distinguish between Sigma and pie bond
4.6.2 Illustrate structure of different hybridized atom

5 GASES

6 LIQUIDS

6.1 Understand properties of liquids 2. HRS
6.1.1 Define viscosity
6.1.2 Give units of viscosity in different systems
6.1.3 Enlist methods of measurement of viscosity
6.1.4 Explain measurement of viscosity by ostwald's viscometer
6.1.5 Describe temperature effect on viscosity
6.2 Understand surface tension 2. HRS
6.2.1 Describe surface tension
6.2.2 Name the units of surface tension
6.2.3 Enlist methods for the measurement of surface tension.
6.2.4 Explain measurement of surface tension by torsion balance.
7. SOLID
7.1 Understand properties of solids.
7.1.1 Enlist the properties of solids
7.1.2 Explain density
7.1.3 Give units of density
7.1.4 Give effect of temperature on volume.
7.1.5 Define amorphous state
7.1.6 Explain colloidal state.
7.1.7Distinguish amorphous state, collridal state and solid state.
7.2 Understand crystal habits.
7.2.1 Name types of crystals
7.2.2 Define crystal latice.

8 . SOLUTION
8.1 Understand types of solution
8.1.1 Name of types of solution
8.1.2 Give example of different type of solution
8.1.3 Enlist the units used for the coricentration of sol
8.1.4 Know ideal and no ideal solution
8.2 Know ideal and no ideal solution.
8.2.1 Give examples of ideal solution
8.2.2Distinguish between ideal solution and non ideal solution
9. OXIDATION, REDUCTION

1. HRS

9.1 Understand oxidation and reduction.
9.1.1 Describe oxidation with examples
9.1.2 Describe reduction with examples
9.1.3 Enlist oxidizing agent
9.1.4 Name reducing agent.
9.2 Understand balancing equation by oxidation number
9.2.1Calculate oxidation number of an element in a compound. 9.2.2 Balance the equation.

```
10. UNDERSTAND WATER.
    10.1.1 Enlist water sources
    10.1.2 name the impurities of water
    10.1.3 Explain causes of hardness..
    10.1.4 Define hard water
    10.1.5 Describe soft water.
    10.1.6 Explain causes of harshness.
    10.1.7Explain removal of permanent hardness by different methods.
    10.1.8Explain removal of temporary hardness by different methods.
11. ALLOYS
    11.1 Know composition of alloys
    11.1.1 Define alloys
    11.1.2 Give examples of alloys with their composition
    11.1.3 Enlist general properties of alloys
    11.1.4 Give uses of alloys.
    11.2 Know German silver and bronze
    11.2.1 Give composition of German silver.
    11.2.2 Give composition of bronze
    11.2.3 Enlist uses of German silver.
    11.2.4 Give uses of bronze
    11.3 Know Nichrom and Amalgam
    11.3.1 Give the composition of Nick Rom
    11.3.2 Enlist uses of Nick Rom
    11.3.3 Define amalgam
    11.4 Know bell metal and solder.
    11.4.1 Give composition of bell metal
    11.4.2 Define solder
    11.4.3 Give composition of solder
    11.4.4 Enlist uses of bell metal
    11.4.5 Give uses of solder
```


12. ACID AND BASE

```
12.1 Understand properties of acid and base 12.1.1 Define acid
12.1.2 Distinguish between acid and base
12.1.3 Describe general properties of acids
12.1.4 Explain in general properties of bases.
12.2 Understand strong and week acid
12.2.1 Give examples of strong acid
12.2.2 Enlist examples of weak acid
12.2.3 Distinguish between strong and weak acid
12.3 Know acidity and basicity
12.3.1 Define acidity.
12.3.2 Define basicity
12.3.3 Calculate acidity and basicity.
13 SALT
13.1 Understand types of salts 2. HRS
13.1.1 Define salt
```

13.1.2 Name types of salt
13.1.3 Explain mental salt with examples
13.1.4 Explain acidic salt with examples
13.1.5 Explain basic salt with examples
13.1.6 illustrate double salt with examples
13.1.7 Distinguish between double salt and complex salt
14 METAL
14.1 Understand metals

1. HRS
14.1.1 Define metals
14.1.2 Give examples of materials
14.1.3 Differentiate metals and non metals
14.2 Understand purification of ores 2. HRS
14.2.1 Define ores
14.2.2 Name impurities of ores
14.2.3 Enlist methods of purification of ores
14.2.4 Explain different methods of purification of ores
14.3 Understand methods of extraction of metals 1. HRS
14.3.1 Name methods of extraction of metals
14.3.2 describe different methods of extraction
15 IRON
15.1 understand iron purification 1. HRS 15.1.1 List ores of iron
15.1.2 Name impurities of iron ores
15.1.3 List steps involed in the purification of iron
15.2 Understand manufacture of pig iron 2. HRS
15.2.1 Define pig iron
15.2.2 Name the furnaces used for manufacture of pig iron
15.2.3 List the material required for melting of pig iron 15.2.4 Explain reactions of blast furnace
15.3 Understand manufacture of steel 1. HRS
15.3.1 Enlist types of steel
15.3.2 Give composition of steel
15.3.3 Describe manufacture of steel
16 COPPER
16.1 Understand extractijon of copper 2. HRS
16.1.1 Enlist ores of copper
16.1.2 Name the extraction methods of copper
16.1.3 Name equipment used for extraction of copper
16.1.4 Describe copper extraction
16.2 Understand copper refining and uses of copper 1. HRS
16.2.1 Explain refining of copper
16.2.2 Enlist of copper

17. ALUMINIUM

17.1 Understand extraction of aluminium 1. HRS
17.1.1 List ores of aluminium
17.1.2 Name methods of aluminium extraction
17.1.3 Explain electrolysis of bauxite
17.1.4 Give the uses of aluminium

18 CHOROMIUM

18.1 Understand chromium extraction 1. HRS
18.1.1 Enlist chromium ores
18.1.2 Describe chromium extraction
18.1.3 Name alloys of chromium
18.1.4 Enlist use of chromium

BOOKS RECOMMENDED

1. Chemistry part-I (for F.Sc students) by Dr. K.M. Ibne Rasa Dr. M. Afzal
2. Practical chemistry for intermediate class.

CHT-164 GENERAL CHEMISTRY

LIST OF PRACTICALS.

```
Salt Analysis
Acidic Radicals
Dilute Acid Group
Concentrated Acid Group
Special Group
BASIC RADICALS
IST group Radicals
IIND group Radicals
    2nd A
    2nd B
IIIRD Group Radicals
4th Group Radicals
5th Group Radicals
6th Group Radicals
ANALYTICAL BALANCE WEIGHING TECHNIQUES
SEPARATION OF SALTS BY
    Sublimation process
    Filtration process
    Selimentation process
PRACTICAL NOTE BOOK
SALT ANALYSIS SCHEME
```


MT-143 BASIC ENGINEERING DRAWING \& CAD-I

T	P	C
1	6	3

Total contact hrs.
Theory 32
Practicals 192
Pre-requisite: None
AIMSAt the end of this course the students will be able to understand the fundamentals of engineering drawing used in the various fields of industry specially in the Mechanical Technology. The student will be familiarized with the use of conventional drawing instruments as well as the modern technology used for this subject. The CAD portion of the subject will provide the student the knowledge \& use of computer in the subject of Engineering Drawing.

COURSE CONTENTS

PART-A ENGINEERING DRAWING

1. USES AND APPLICATIONS OF TECHNICAL DRAWING

1 Hours
1.1 Technical drawing and the technician.
1.2 Use of technical drawing.
1.3 Common drawing forms.
1.4 Application of drawing forms.
1.5 Practices and conventions.
2. DRAWING TOOLS AND ACCESSORIES.

2 Hours
2.1 Drawing pencil
2.2 Drawing papers specifications
2.3 Drawing Instruments
2.4 Use and care of drawing instruments and material.
3. ALPHABET OF LINES USED IN DRAWING

2 Hours
3.1 Importance the alphabet of lines.
3.2 Common alphabet of lines
3.3 Uses and correct line weightage of the line.
3.4 Application of line
4. LETTERING.

2 Hours
4.1 Importance of good lettering.
4.2 Single stroke of gothic.
4.3 Letter strokes.
4.4 Letter guide lines.
4.5 Vertical single stroke gothic
4.6 Inclined single stroke gothic
4.7 Composition of lettering
5. DRAWING LINES TECHNOLOGY 2 Hours
5.1 Introduction to sketching techniques

```
    5.2 Sketching lines
    5.3 Sketching circles and arcs
    5.4 Sketching ellipse.
    5.5 Sketching views of objects
```

6. GEOMETRICAL CONSTRUCTIONS 2 Hours
6.1 Introduction to geometry
6.2 Definition of terms
6.3 Different conventional shapes, surfaces and objects
6.4 Basic geometrical construction
6.5 Construction, ellipse, parabola
6.6 Involute and cycloids
7. INTRODUCTION TO MULTI-VIEW PROJECTIONS

3 Hours
7.1 Definition and concept of multi-view drawings
7.2 Proceptual vies of plan of projections
7.3 Orthographic projections
7.4 1st angle and 3rd angle projections
7.5 Principal views
7.6 Arrangement of views
7.7 Multi-view drawings
8. INTRODUCTION TO PICTORIAL DRAWINGS. 2 Hours
8.1 Uses of pictorial
8.2 Three types of pictorial views
8.3 Isometric sketching of rectangular block
8.4 Isometric sketching of Arcs and circles
8.5 Oblique sketching of rectangular block
8.6 One point perspective sketching of a rectangular block.
8.7 Two point perspective sketching of a rectangular block.
8.8 Preparation of pictorial drawings of simple objects.
9. BASIC DIMENSIONING.

2 Hours
9.1 Definition of dimensioning.
9.2 Types of dimensioning.
9.3 Elements of dimensioning.
9.4 System of measurements.
9.5 Dimensioning multi-view drawings.
9.6 Dimensioning pictorial views.
9.7 Dimensioning rules and practices.
9.8 Notes and specification
10. SECTIONING AND SECTIONAL VIEWS.

2 Hours
10.1 Definition and purpose.
10.2 Cutting planes position and cutting plane lines
10.3 Types of sectional views.
10.4 Conventional section lines of different materials.
10.5 Practice sectioned views.
11. MULTI-VIEW DRAWING OF MACHINE ELEMENTS

2 Hours
11.1 Terminology and drawing of rivets and riveted joints
11.2 Terminology and drawing of screw threads
11.3 Terminology and drawing of keys and cotters
11.4 Description and drawing of simple bearings
11.5 Describe and drawing of simple coupling

PART-B : CAD-I
12. CAD FUNDAMENTALS 2 Hours
12.1 CAD \& its importance
12.2 Purposes
12.3 Advantages
13. CAD SOFTWARE

2 Hours
13.1CAD Abbreviations
13.2CAD Help
13.3Co-ordinate systems
14. BORDER TEMPLATE

2 Hours
14.1Drawing area
14.2 SNAP \& GRID
14.3Pedit \& Qsave

15.TITLE BLOCK

2 Hours
15.1Change Command
15.2Layer creation
15.3Zooming
15.4Typefaces of CAD
15.5Plotting
16. LINES \& CIRCLES 2 Hours
16.1Dedit
16.2Analyzed line drawing
16.3U \& Redo command
16.4Drawing a circle

RECOMMENDED BOOKS:

1. Engineering drawing by French Wirk
2.ABC's of Auto CAD Release-12 by Alan R Miller

MT-143 BASIC ENGINEERING DRAWING \& CAD-I

INSTRUCTIONAL OBJECTIVES

SECTION-I ENGINERING DRAWING

1. USES AND APPLICATIONS OF TECHNICAL DRAWING

1.1 Know the uses of Technical Drawing
1.1.1Describe the importance of Technical Drawing from the point of view of a Technician
1.1.2Explain the main uses of Technical Drawing from the point of view of a Technician
1.2 Recognizes the different application of Technical drawing
1.2.1 Identify commonly used drawing forms
1.2.2 Illustrate the different drawing forms
1.2.3 Differentiate different drawing forms
1.2.4 Develop Technical vocabulary
2.KNOW THE COMMON DRAWING TOOLS AND ACCESSORIES
2.1Identify the uses of different pencils for Technical Drawing.
2.2 Identify different paper sizes for drawing.
2.3Identify different types of papers suitable for drawing.
2.4Identify different types of erasers and their uses.
2.5 Maintain a will sharpened pencil for drawing.
2.6 Describe the drawing instruments.
2.7 State the use of drawing instruments.
3.UNDERSTAND THE IMPORTANCE OF ALPHABET, CORRECT WEIGHTAGE AND APPLICATION OF LINES USES IN TECHNICAL DRAWING.
3.1Knows the importance of lines.
3.2 Knows the Alphabet of lines.
3.3Identify the lines characteristics of each alphabet of lines.
3.4Draw horizontal, vertical and inclined lines
3.5 Draw alone line with correct weightages
4.APPLIES THE GOOD LETTERING AN A DRAWING
4.1Know the importance of lettering in a Technical engineering drawing.
4.2Identify the letter style used in Technical drawing.
4.3 State letter strokes and guide lines.
4.4 Perform better stroke in single stroke gothic.
4.5Print vertical single stroke letters and numbers.
4.6Print inclined single stroke letters and numbers.
4.70bserve stability and pleasing appearance of letters in printing
5. UNDERSTAND SELECTING OF CIRCLES, ARCS, AND VIEWS OF OBJECTS.
5.1Draw circular an arc using circular line method.
5.2 Draw a circular arc using square method.
5.3 Draw an ellipse using rectangular method.
5.4 Draw views of simple objects.
6.APPLY DRAWING SKILL WITH THE AID OF DRAWING INSTRUMENTS IN GEOMETRICAL CONSTRUCTION
6.1Define common terms used in geometrical construction.
6.2Explain different geometrical shapes, surfaces of objects.
6.3 Draw basic geometrical construction.
6.4Draw involute, cycloid, spiral, tangent to circle and are
7.UNDERSTAND THE MULTI VIEW OF PROJECTIONS SPECIFIC OBJECTIVE
7.1 Define the concept of multi-view drawings.
7.2 Knows principle planes of projections.
7.3 Knows the orthographic method of projection.
7.4 Explain the 1st and 3rd angle projections.
7.5 State six principle views.
7.6 Practice multi-view projections.
8.APPLY THE USE, TYPES AND METHODS OF PICTORIAL VIEWS
8.1 Knows the use of pictorial views.
8.2 Knows the pre-requisite of pictorial drawing.
8.3 State three types of pictorial drawings.
8.4Draw isometric view of rectangular Blocks, Ares, circles.
8.5 Draw oblique sketching of rectangular blocks.
8.6Draw one-point perspective view of a Rectangular block.
8.7Draw Two point perspective view of a rectangular block.
8.8Prepare/draw pictorial drawings of simple objects.
9. APPLY GOOD DIMENSIONING ON MULTIVIEWS AND PICTORIALS.
9.1 Define dimensioning.
9.2 Identify the types of dimensioning.
9.3 Enlist the elements of dimensioning.
9.4 Identify the system of measurements.
9.5 Indicate complete dimension on multi view drawings.
9.6 Indicate complete dimension or pictorial drawings.
9.7 Follow the general rules for dimensioning.
9.9Indicate notes and specification or multiview drawings.
10.APPLY THE SECTIONING METHODS OF MATERIAL AND DRAW SECTIONAL VIEWS.
10.1 Define sectioning and its purpose.
10.2 Describe cutting planes and lines.
10.3 State types of sectional views.
10.4Explain conventional section lines of different materials.
10.5 Practice sectioning.
11.APPLY DRAWING METHODS TO DRAW MULTIVIEWS OF MACHINE ELEMENTS.
11.1 Draw multiviews of vee-block.
11.2 Draw multiviews of Gland
11.3 Draw keys \& cotters.
11.4 Draw Multi views of simple bearing.
SECTION-II COMPUTER AIDED DESIGN.

12. UNDERSTAND CAD FUNDAMENTALS.

12.1 Define CAD.
12.2 Describes importance of CAD.
12.3 States purpose of CAD.
12.4 Explain advantages of CAD.
12.5 Establish importance of CAD usage in industry.
13. UNDERSTAND CAD SOFTWARE.
13.1Describe computer system requirements for CAD (e.g Auto CAD release 12 or latest).
13.2 State procedure of giving command to CAD.
13.3 State CAD (e.g autocad rel. 12 or latest) abbreviations.
13.4 State use of function keys.
13.5 Describe procedure of giving commands with a mouse.
13.6Explain procedure of getting general help for a specific command.
13.7 Explain drawing cursor and coordinate read out.
13.8 Explain cartesian notion.
13.9 Explain polar notation.
14. UNDERSTAND BORDER TEMPLATE OF A DRAWING.
14.1 Describe setting up of drawing area.
14.2 Describe setting of displayed digits.
14.3 Explain changing the drawing limits.
14.4 Explain use of grid system (auto rel-12 or latest).
14.5 Explain adjustment of drawing scale.
14.6 Explain procedure of drawing line with line command.
14.7 Explain P-edit command for widening boarder.
14.8 Explain procedure of saving boarder template.
15. UNDERSTAND ADDING A TITLE BLOCK TO THE BORDER DRAWING.
15.1 Describe checking the drawing time.
15.2 Explain Change command.
15.3 Explain creation of layer for title block.
15.4 Explain procedure of creating a title block.
15.5 Explain Zoom command.
15.6 Explain importance of saving a drawing.
15.7 Explain use of CAD (Autocad R-12 or latest).
15. 8Explain filling in the title block by writing drawing title, name etc.
15.9 Explain procedure of plotting drawing on a plotter or
printer.
15.10 Explain Qsave command.
16. UNDERSTAND DRAWING LINES AND CIRCLES.
16.1 State beginning of a new drawing.
16.2 Explain Dedit command (autocad R-12 or latest).
16.3 Describe viewing the entire drawing.
16.4 Explain drawing of angled line.
16.5 Explain U-command.
16.6 Explain Redo command.
16.7 Explain drawing a circle with circle command.
16.8 Explain automatic work saving procedures.

MT-143 BASIC ENGINEERING DRAWING \& CAD-I

LIST OF PRACTICALS

A. BASIC ENGINEERING DRAWING:

1.Lettering 5 mm height
2.Lettering 3mm height
3.Use of Tee Square and set squares for drawing horizontal, vertical and inclined lines.
4.use of Tee square and for drawing centres, crossing of lines
5.use of compass, circles, half circles, radius.
6.Draw round corners, figure inside and outside circle.
7.Plane geometry angles and triangles.
8. Plane Geometry quadrilateral square rhombus, rectangle and parallelogram 9.Plane geometry parallel-lines, perpendicular, bisect line and angle.
10.Plane geometry equal division of line and some radio with the help of compass and set square.
11.Plane geometry inscribe and circumscribe square, triangle and hexagon.
12.Plane geometry of construction of polygon, five, six, seven and eight sides.
13.Plane geometry of inscribe pentagon in a circle and pentagon by general and different methods.
14.Plane geometry of tangent of circle inside and outside
15.Plane geometry of construction of ellipse with two methods.
16. Plane geometry of construction of ellipse with next two methods.
17.Plane geometry of construction of parabola curve 4 methods
18.Plane geometry of construction of hyperbola curve
19.Plane geometry of Spiral curve
20.Plane geometry of helix curve.
21.Plane geometry of construction of involute curve of square rectangle hexagon and circle
22. Different types of drawing lines.
23.Orthographic projection 1 and 3rd angle L block
24.Orthographic projection 1 and 3rd angle Step Block
25.Orthographic projection 1 and 3rd angle Vee block
26.Orthographic projection 1 and 3rd angle Given Block
27. Orthographic projection 1 and 3rd angle Additional Block
28.Orthographic projection and Isometric Drawing Given Block
29.Orthographic projection and Isometric Drawing Given Block next
30.Orthographic projection and Isometric Drawing Given Block next
31. Different types of sectioning
32.different section lines for different material
33. Orthographic projection of Vee block sectional views.
34.Orthographic projection Gland sectional views
35.Orthographic projection Open bearing sectional views
36. Concept for different types of Drawings
37.Isometric and oblige drawings of cube with one hole.
38.Isometric and oblige drawings of another given block.
39.Missing lines and portions on given views

```
40.Missing lines and portions on given views next
41.Missing lines and portions on given views next
42.Missing lines and portions on given views next
43.Isometric scale and development of cube
44.Development of prism
45.Development of cylinder
46.Development of Cone
47.Development of Pyramid
48.Thread profile of square and vee threads.
49.Different types of threads
50.Sketch of hexagonal nut and bolt
51.Rivet heads
52.Single riveted lap joint
53.Single riveted but joint
```


B.COMPUTER AIDED DESIGN (Auto cad Rel-12 or latest).

```
1. Practice loading CAD software into computer memory.
2.Practice un loading CAD software safely and cone to Dos prompt.
3.Practice CAD abbreviations, auto CAD release 12 of latest (e.g A for Arc,
    C for circle, E for Erase etc).
4. Practice function keys for short cuts.
5.Practice to draw two points using cartesian Notation on graph paper
6.Practice to draw straight line using polar coordinates on graph paper
7. Set-up drawing area using CAD software
8. Practice for Turning GRID ON and OFF and SNAP on and OFF
9. Draw a line with line command
10. Widen Border lines with pedit
11. Save Border Template (QSAVE)
12. Create layers and move border to it's own layer
13. Create a layer for Title Block
14. Create Title Block
15. Practice for Zoom command
16. Practice for CAD Type faces (Auto CAD Rel-12 or latest)
17. Practice for filling Title Block
18. Practice for plotting the drawing on plotter or printer
19. Begin a New drawing
20. Practice with Dedit command to make changes in the drawing
21. Draw an Angled line
22. Practice with U-Command and Redo command
23. Draw a circle with circle command
```

